
16

The Research Monograph Series in Computing, Electrical & Communication Networks
Vol. 1 (01), April 2023, pp. 16–19

CHAPTER 3

REFRACTORING OF SOFTWARE MODEL

3.1 INTRODUCTION

The process of predicting and evaluating the software system in
satisfying performance of goals of the User is software performances.
A suitable abstract model of the final software is required to predict
the performance of a software system. It should also provide a suitable
description of the run-time behavior of the software system to estimate
that performance. Measuring i.e. the activity of measuring the
performances of the system’s implementation is referred to performance
evaluation. The performance-intensive software systems quality, like
high-performance scientific computing systems and distributed real-time
and embedded (DRE) systems is largely dependent on their infrastructure
platforms which include the platform, operating system, middleware,
and language processing tools. But the infrastructures need to be tuned
by the developers along with the software applications in order to
accumulate the often changing platform environments and performance
requirements.

3.2 PROPOSED SYSTEM

Unified Model Language has been accepted as a standard for designing
new systems. System designers capture their ideas through its array of
notations and thereby making it expressive to understand easily. Thus a
novel scheme is proposed by the research work to develop a performance
model by building a software model. In this research work, UML profile
is represented defining tagged values, constraints and new stereo types
to trace design patterns in UML diagram. And this approach visualizes
design patterns in UML diagrams.

3.3 PROPOSED ARCHITECTURE DESIGN

The transformation from software model to performance model is
described and detailed by the proposed architecture design in Figure 3.1,

 Refractoring of Software Model 17

As the architecture satisfies all needs of the user, because the architecture
designs contains a feedback collecting method.

The design which is made by UML for a system is mapped on the
QN with the help of Visualization of Software Design (VSD) which is
created with the help of java tool. Visualizing, specifying, constructing
and documenting the artifacts of software intensive system is done by
UML, which is a graphical language. An interaction diagram is provided
by UML to model the dynamic aspects of a system. Besides including the
messages which might be sent from one object to another.

It consists of objects, and their relationship, constructing an executable
system through forward engineering with regard to achieve automatic
performance generation, made possible by an interaction diagram.

Software is designed with UML. This UML diagram uses VSD tool
to map the UML diagram into QN in which QN and platform model
supports it in conversion. The evaluation of indices is generated by
performance model such as Response Time, Throughput and resource
utilization, refer to performance indices. Particle Swarm Optimization
(PSO) helps the performance indices to evaluate the generated outcome.

Analyzing performance indices is done successfully, with the help of
PSO and it is verified with the help of Spearman correlation coefficient. If
the values are acceptable then it is directed to software development else a
feedback is sent to the UML redesign. The redesign is made with the help
of the rule which has been proposed by the researcher.

Software

Design

VSD

(Visualization

of Software

Design)

PSO based

Performance

Model
Development

Feedback for

Re-Engineering

UML

Redesign

Performance IndicesPlatform

Model

Figure 3.1 Architecture Diagram.

18 Refactoring of Software Architectural Design for Performance Optimization

3.3.1 Phases of Research

The Research work is done in three different phases:

Phase 1: Software model is designed using the UML diagrams, annotated
with the help of VSD by using the performance information such as
Schedulability, Performance and Time specification (SPT) profile and
mapped on to the QN.

Phase 2: QN solved using QNsolver, the quantitative results are optimized
using the PSO algorithm.

Phase 3: Functional attributes are checked using the PSO,
if the design needs a change, apply rules and give the feedback
making changes, until the customer requirement is satisfied iterate from
Phase 2.

3.4 ARCHITECTURE FRAMEWORK

The representation of the architecture flow is shown in the Figure 3.2. The
input is given as a UML diagram.

The UML diagrams are annotated and are mapped to the QN using the
VSD, a tool that is created using the java. This tool, maps with the help of
the QNBE elements shown in the Figure 3.2, with these elements the QN
is solved using the QNsolver.

The attributes are evaluated using the PSO for the optimization and
checked for the customer requirements, if the qualitative attributes are
satisfied then we propose the diagram for development. If the attributes
are not satisfied, then the flow proposes a feedback for refactoring
the software design with the help of the proposed rules framed by the
researcher.

 Refractoring of Software Model 19

Annotated UML

Diagrams

VSD

Development

Generate feedback

Apply rules

Extract attribute Inputs

Build QN

Quantative parameters

of a system

Interpretations

Identify changes

Compare with

request

Satisfied

Need changes

Apply changes

Figure 3.2 Architecture activities.

